
Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifi

Chip Monolithic Ceramic Capacitors

Innovator in Electronics

Murata Manufacturing Co., Ltd.

Cat.No.C02E-16

Part Numbering Chip Monolithic Ceramic Capacitors GR M 18 8 B1 1H 102 K A01 D (Part Number) Ð 0 6 4 6 6 Ø 8 9 D Product ID 2 Series Product ID Code Series J Soft Termination Type Μ Tin Plated Layer GR 4 Only for Information Devices / Tip & Ring 7 Only for Camera Flash Circuit High Frequency for М GQ Flow/Reflow Soldering Α Monolithic Microchip GM D For Bonding GN Μ Capacitor Array L Low ESL Type R Controlled ESR Low ESL Type LL Α 8-termination Low ESL Type М 10-termination Low ESL Type GJ Μ High Frequency Low Loss Type 2 For AC250V (r.m.s.) GA 3 Safety Standard Certified Type

Object Strength St

Code	Dimensions (L×W)	EIA
02	0.4×0.2mm	01005
03	0.6×0.3mm	0201
05	0.5×0.5mm	0202
08	0.8×0.8mm	0303
0D	0.38×0.38mm	015015
OM	0.9×0.6mm	0302
15	1.0×0.5mm	0402
18	1.6×0.8mm	0603
1M	1.37×1.0mm	0504
21	2.0×1.25mm	0805
22	2.8×2.8mm	1111
31	3.2×1.6mm	1206
32	3.2×2.5mm	1210
42	4.5×2.0mm	1808
43	4.5×3.2mm	1812
52	5.7×2.8mm	2211
55	5.7×5.0mm	2220

④Dimension (T) (Except GNM)

Code	Dimension (T)			
2	0.2mm			
3	0.3mm			
5	0.5mm			
6	0.6mm			
7	0.7mm			
8	0.8mm			
9	0.85mm			
Α	1.0mm			
В	1.25mm			
С	1.6mm			
D	2.0mm			
E	2.5mm			
F	3.2mm			
м	1.15mm			
Ν	1.35mm			
Q	1.5mm			
R	1.8mm			
S	2.8mm			
х	Depends on individual standards.			

Elements (GNM Only)

Code	Elements
2	2-elements
4	4-elements

Continued on the following page.

1Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.	C02E.pdf
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.	10.12.20

Temperatur	e Characteristic	Codes	Temperature Characteristics			
Code Public STD Code		Code	Reference Temperature	Temperature Range	Capacitance Change or Temperature Coefficient	Operating Temperature Range
1X	SL *1	JIS	20°C	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C
2C	CH *1	JIS	20°C	20 to 125°C	0±60ppm/°C	-55 to 125°C
2P	PH *1	JIS	20°C	20 to 85°C	-150±60ppm/°C	-25 to 85°C
2R	RH *1	JIS	20°C	20 to 85°C	-220±60ppm/°C	-25 to 85°C
2S	SH *1	JIS	20°C	20 to 85°C	-330±60ppm/°C	-25 to 85°C
2T	TH *1	JIS	20°C	20 to 85°C	-470±60ppm/°C	-25 to 85°C
3C	CJ *1	JIS	20°C	20 to 125°C	0±120ppm/°C	-55 to 125°C
3P	PJ *1	JIS	20°C	20 to 85°C	-150±120ppm/°C	-25 to 85°C
3R	RJ *1	JIS	20°C	20 to 85°C	-220±120ppm/°C	-25 to 85°C
3S	SJ *1	JIS	20°C	20 to 85°C	-330±120ppm/°C	-25 to 85°C
3T	TJ *1	JIS	20°C	20 to 85°C	-470±120ppm/°C	-25 to 85°C
3U	UJ *1	JIS	20°C	20 to 85°C	-750±120ppm/°C	-25 to 85°C
4C	CK *1	JIS	20°C	20 to 125°C	0±250ppm/°C	-55 to 125°C
5C	C0G *1	EIA	25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C
5G	X8G *1	EIA	25°C	25 to 150°C	0±30ppm/°C	-55 to 150°C
6C	C0H *1	EIA	25°C	25 to 125°C	0±60ppm/°C	-55 to 125°C
6P	P2H *1	EIA	25°C	25 to 85°C	-150±60ppm/°C	-55 to 125°C
6R	R2H *1	EIA	25°C	25 to 85°C	-220±60ppm/°C	-55 to 125°C
6S	S2H *1	EIA	25°C	25 to 85°C	-330±60ppm/°C	-55 to 125°C
6T	T2H *1	EIA	25°C	25 to 85°C	-470±60ppm/°C	-55 to 125°C
7U	U2J *1	EIA	25°C	25 to 125°C *6	-750±120ppm/°C	-55 to 125°C
B1	B *2	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C
B3	В	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C
C7	X7S	EIA	25°C	-55 to 125°C	±22%	-55 to 125°C
C8	X6S	EIA	25°C	-55 to 105°C	±22%	-55 to 105°C
D7	X7T	EIA	25°C	-55 to 125°C	+22, -33%	-55 to 125°C
D8	X6T	EIA	25°C	-55 to 105°C	+22, -33%	-55 to 105°C
E7	X7U	EIA	25°C	-55 to 125°C	+22, -56%	-55 to 125°C
F1	F *2	JIS	20°C	-25 to 85°C	+30, -80%	-25 to 85°C
F5	Y5V	EIA	25°C	-30 to 85°C	+22, -82%	-30 to 85°C
L8	X8L	*3	25°C	-55 to 150°C	+15, -40%	-55 to 150°C
R1	R *2	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C
R3	R	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C
R6	X5R	EIA	25°C	-55 to 85°C	±15%	-55 to 85°C
R7	X7R	EIA	25°C	-55 to 125°C	±15%	-55 to 125°C
R9	X8R	EIA	25°C	-55 to 150°C	±15%	-55 to 150°C
					±10% *4	
WO	-	-	25°C	-55 to 125°C	+22, -33% *5	-55 to 125°C

*1 Please refer to table for Capacitance Change under reference temperature. *2 Capacitance change is specified with 50% rated voltage applied.

*3 Murata Temperature Characteristic Code.

*4 Apply DC350V bias. *5 No DC bias.

*6 Rated Voltage 100Vdc max : 25 to 85°C

Continued on the following page. $\boxed{\circlel{A}}$

Continued from the preceding page.

•Capacitance Change from each temperature

JIS Code

		Capacitance Change from 20°C (%)					
Murata Code	–55°C		–25°C		–10°C		
	Max.	Min.	Max.	Min.	Max.	Min.	
1X	-	-	-	-	-	-	
2C	0.82	-0.45	0.49	-0.27	0.33	-0.18	
2P	-	-	1.32	0.41	0.88	0.27	
2R	-	-	1.70	0.72	1.13	0.48	
2S	-	-	2.30	1.22	1.54	0.81	
2T	-	-	3.07	1.85	2.05	1.23	
3C	1.37	-0.90	0.82	-0.54	0.55	-0.36	
3P	_	-	1.65	0.14	1.10	0.09	
3R	_	-	2.03	0.45	1.35	0.30	
3S	_	-	2.63	0.95	1.76	0.63	
3Т	_	-	3.40	1.58	2.27	1.05	
3U	_	-	4.94	2.84	3.29	1.89	
4C	2.56	-1.88	1.54	-1.13	1.02	-0.75	

EIA Code

	Capacitance Change from 25°C (%)					
Murata Code	–55°C		-30°C		–10°C	
	Max.	Min.	Max.	Min.	Max.	Min.
5C/5G	0.58	-0.24	0.40	-0.17	0.25	-0.11
6C	0.87	-0.48	0.59	-0.33	0.38	-0.21
6P	2.33	0.72	1.61	0.50	1.02	0.32
6R	3.02	1.28	2.08	0.88	1.32	0.56
6S	4.09	2.16	2.81	1.49	1.79	0.95
6T	5.46	3.28	3.75	2.26	2.39	1.44
7U	8.78	5.04	6.04	3.47	3.84	2.21

6Rated Voltage

Code	Rated Voltage			
0E	DC2.5V			
0G	DC4V			
0J	DC6.3V			
1A	DC10V			
1C	DC16V			
1E	DC25V			
YA	DC35V			
1H	DC50V			
2A	DC100V			
2D	DC200V			
2E	DC250V			
YD	DC300V			
2H	DC500V			
2J	DC630V			
3A	DC1kV			
3D	DC2kV			
3F	DC3.15kV			
BB	DC350V (for Camera Flash Circuit)			
E2	AC250V			
GC	X1/Y2; AC250V (Safety Standard Certified Type GC)			
GF	Y2, X1/Y2; AC250V (Safety Standard Certified Type GF)			
GD	Y3; AC250V (Safety Standard Certified Type GD)			
GB	X2; AC250V (Safety Standard Certified Type GB)			

Capacitance

Expressed by three-digit alphanumerics. The unit is picofarad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter " \mathbf{R} ." In this case, all figures are significant digits.

Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

Continued on the following page.

1 Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.	C02E.pdf
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.	10.12.20

Code	Capacitance Tolerance	TC	Series	Ca	pacitance Step	
w	±0.05pF	СΔ	GRM/GJM	≦9.9pF	0.1pF	
			GRM/GJM	≦9.9pF	0.1pF	
в	±0.1pF	CΔ	GQM	≦1pF	0.1pF	
			GGW	1.1 to 9.9pF	1pF Step and E24 Serie	
		CΔ	GRM/GJM	≦9.9pF	0.1pF	
с	±0.25pF	except C∆	GRM	≦5pF	* 1pF	
C	±0.25рг	Сд	GQM	≦1pF	0.1pF	
		CΔ	GOM	1.1 to 9.9pF	1pF Step and E24 Serie	
		CΔ	GRM/GJM	5.1 to 9.9pF	0.1pF	
D	±0.5pF	except C∆	GRM	5.1 to 9.9pF	* 1pF	
		CΔ	GQM	5.1 to 9.9pF	1pF Step and E24 Seri	
G	±2%	CΔ	GJM	≧10pF	E12 Series	
9	12 /0	CΔ	GQM	≧10pF	E24 Series	
J	±5%	CΔ, SL, U2J	GRM/GA3	≧10pF	E12 Series	
J	1070	CΔ	GQM/GJM	≧10pF	E24 Series	
		B, R, X7R, X5R, ZLM	GRJ/GRM/GR7/GA3		E6 Series	
к	±10%	C0G	GNM		E6 Series	
		B, R, X7R, X5R, ZLM	GR4, GMD		E12 Series	
		B, R, X7R, X7S	GRM/GMA		E6 Series	
м	±20%	X5R, X7R, X7S	GNM		E3 Series	
IVI	±20%	X7R	GA2		E3 Series	
		X5R, X7R, X7S, X6S	LLL/LLR/LLA/LLM		E3 Series	
Z	+80%, -20%	F, Y5V	GRM	E3 Series		
R		Depends on individual standards.				

* E24 series is also available.

Individual Specification Code (Except LLR) Expressed by three figures.

9ESR (LLR Only)

Code	ESR
E01	100mΩ
E03	220mΩ
E05	470mΩ
E07	1000mΩ

Packaging

Code	Packaging		
L	ø180mm Embossed Taping		
D	ø180mm Paper Taping		
E	ø180mm Paper Taping (LLL15)		
к	ø330mm Embossed Taping		
J	ø330mm Paper Taping		
F	ø330mm Paper Taping (LLL15)		
В	Bulk		
С	Bulk Case		
т	Bulk Tray		

Chip Monolithic Ceramic Capacitors (Medium Voltage)

maRata

For General Purpose GRM/GRJ Series

For Information Devices GR4 Series

Features

- These items are designed specifically for telecommunications devices (IEEE802.3) in Ethernet LAN and primary-secondary coupling for DC-DC converters.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Sn-plated external electrodes realize good solderability.
- 4. Only for reflow soldering

Applications

- 1. Ideal for use on telecommunications devices in Ethernet LAN
- 2. Ideal for use as primary-secondary coupling for DC-DC converters

Do not use these products in any Automotive Power train or Safety equipment including Battery charger for Electric Vehicles and Plug-in Hybrid. Only Murata products clearly stipulated as "for Automotive use" can be used for automobile applications such as Power train and Safety equipment.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR442QR73D101KW01L	DC2000	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D121KW01L	DC2000	X7R (EIA)	120 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D151KW01L	DC2000	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D181KW01L	DC2000	X7R (EIA)	180 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D221KW01L	DC2000	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D271KW01L	DC2000	X7R (EIA)	270 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D331KW01L	DC2000	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D391KW01L	DC2000	X7R (EIA)	390 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D471KW01L	DC2000	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D561KW01L	DC2000	X7R (EIA)	560 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D681KW01L	DC2000	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D821KW01L	DC2000	X7R (EIA)	820 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D102KW01L	DC2000	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D122KW01L	DC2000	X7R (EIA)	1200 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D152KW01L	DC2000	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR443QR73D182KW01L	DC2000	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D222KW01L	DC2000	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D272KW01L	DC2000	X7R (EIA)	2700 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D332KW01L	DC2000	X7R (EIA)	3300 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D392KW01L	DC2000	X7R (EIA)	3900 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443DR73D472KW01L	DC2000	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.
GR455DR73D103KW01L	DC2000	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	3.2	0.3 min.

		-						
Part Number	Dimensions (mm)							
Part Number	L	W	Т	e min.	g min.			
GR442Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3					
GR443D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	0.3	2.5			
GR443Q			1.5 +0, -0.3					
GR455D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3		3.2			

GR4 Series Specifications and Test Methods

GRJ	No	. Ite	em	Specifications	Test Method			
GRM/GRJ Se	1	Operating Temperati		−55 to +125℃		_		
Ĕ	2	Appearar	nce	No defects or abnormalities	Visual inspection			
D	3	Dimensio	ons	Within the specified dimensions	Using calipers and	micrometers		
GR4 Series	4	Dielectric	c Strength		No failure should be observed when voltage in the table is applied between the terminations, provided the charge/dischar current is less than 50mA.			
2. Č					Rated Voltage	Test Voltage 120% of the rated voltage	Time 60±1 sec.	
, Ŭ					DC2kV	AC1500V(r.m.s.)	60±1 sec.	
GA2 Series	5	Pulse Vo	ltage	No self healing breakdowns or flash-overs have taken place in the capacitor.	10 impulses of alternating polarity are subjected. (5 impulses for each polarity) The interval between impulses is 60 sec. Applied Pulse: 1.2/50μs Applied Voltage: 2.5kVo-p			
A2 Se	6	Insulation (I.R.)	Resistance	More than $6,000M\Omega$	The insulation resis and within 60±5 se	tance should be measured w c. of charging.	ith DC500±50	
0	7	Capacita	nce	Within the specified tolerance	The conceiterer /D			
	8	Dissipatio Factor (D		0.025 max.		F. should be measured at a f Itage of AC1±0.2V(r.m.s.)	requency of	
cion Safety Standard Certified GA3 Series	9	Capacitance Temperature Characteristics		Cap. Change within ±15% (Temp. Range: −55 to +125℃)	The capacitance measurement should be made at each step specified in the Table.Step Temperature (°C)1 25 ± 2 2Min. Operating Temp. ± 3 3 25 ± 2 4Max. Operating Temp. ± 2 5 25 ± 2 • PretreatmentPerform a heat treatment at 150^{+0}_{-10} °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at room condition.*			
	10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	uld occur. Solder the capacitor to the testing jig (glass in Fig. 1. Then apply 10N force in the direction of the The soldering should be done using the refi- should be conducted with care so that the si- and free of defects such as heat shock. Glass Epox Fig. 1		arrow. ow method and oldering is uniform	
			Appearance	No defects or abnormalities	Solder the capacito	r to the test jig (glass epoxy b	ooard).	
			Capacitance	Within the specified tolerance		Id be subjected to a simple h tude of 1.5mm, the frequenc		
	11	Vibration Resistance	D.F.	0.025 max.	uniformly between f frequency range, fro traversed in approxi for a period of 2 hrs directions (total of 6	the approximate limits of 10 a om 10 to 55Hz and return to 1 imately 1 min. This motion sh . in each of 3 mutually perpe	nd 55Hz. The OHz, should be ould be applied ndicular	

* "Room condition" Temperature: 15 to 35°c, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page. \square

For General Purpose GRM/GRJ Series

Only for Applications GR4 Series

AC250V Type GA2 Series

Safety Standard Certified GA3 Series

Product Information

GR4 Series Specifications and Test Methods

lo.	Ite	m	Specifications		Test Method						
12			No marking defects	i i i i	с 2.4 3.7	d 1.0	Solder the capacitor to the testing jig (glass epoxy boar in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method should be conducted with care so that the soldering is and free of defects such as heat shock. $\underbrace{20}_{\text{speed: 1.0mm/s}}^{50} \underset{\text{pressurize}}{\text{pressurize}} \underset{\text{(in mm)}}{\text{Flexure=1}} \underset{\text{(in mm)}}{\text{Fig. 3}}$		n Fig. 3. flow method and soldering is uniform n/s		
			<u>5.7×5.0</u> 4.5	8.0	5.6			Fig. 3			
13	Solderabi Terminati	2	75% of the terminations are	to be soldered	evenly an	d continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) ar rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu 235±5°C H60A or H63A Eutectic Solder				
		Appearance	No marking defects					apacitor as in table.			
		Capacitance Change	Within ±10%				Immerse the capacitor in solder solution at 260±5°C for sec. Let sit at room condition* for 24±2 hrs., then measu •Immersing speed: 25±2.5mm/s				
	Resistance	D.F.					 Pretreatment Perform a heat treatment at 150⁺¹0^o℃ for 60±5 min. and then 				
4	to Soldering	I.R.	More than 1,000MΩ				let sit for 24 ± 2 hrs. at room condition.*				
		Dielectric Strength	In accordance with item No.4		*Preheating Step 1 2	Temperature 100 to 120℃ 170 to 200℃	Time 1 min. 1 min.				
		Appearance	No marking defects				Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table.				
		Capacitance Change	Within ±15%								
		D.F.	0.05 max.					Let sit for 24±2 hrs. at room condition,* then measure.			
		I.R.	More than 3,000MΩ				Step 1	Temperature (℃) Min. Operating Temp.±3	Time (min.) 30±3		
							2	Room Temp.	2 to 3		
							3	Max. Operating Temp.±2 Room Temp.	30±3 2 to 3		
15	Temperature Cycle	e Dielectric	In accordance with item N	0.4				t t treatment at $150 \pm 18^{\circ}$ C for the formula for the formula for the formula for the formula formula for the formula formula formula for the formula fo			
		Appearance	No marking defects					· ·9· ·			
		Capacitance Change	Within ±15%				for 500 ⁺²⁴ / _o hr				
16	Humidity (Steady	D.F.	0.05 max.				Remove and let sit for 24±2 hrs. at room condition,* then measure.				
	State)	I.R.					•Pretreatmen				
		i.ix.	More than 1,000MΩ In accordance with item No.4			Perform a heat treatment at 150 [±] 1 ^o ^c for 60±5 min. and then let sit for 24±2 hrs. at room condition.*					

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page.

GR4 Series Specifications and Test Methods

Continued from the preceding page.

_	_				
r	No.	Item		Specifications	Test Method
			Appearance	No marking defects	
			Capacitance Change	Within ±20%	Apply 110% of the rated voltage for 1,000 ^{±4} 8 ^h rs. at maximum operating temperature ±3°C. Remove and let sit for 24±2 hrs. at room condition,* then measure.
	17	Life	D.F.	0.05 max.	The charge/discharge current is less than 50mA.
			I.R.	More than 2,000MΩ	Pretreatment Apply test voltage for 60±5 min. at test temperature.
			Dielectric Strength In accorda	In accordance with item No.4	Remove and let sit for 24±2 hrs. at room condition.*

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

GR443DR73D392KW01I	_ GR443DR73D472KW01I	_ GR443QR73D102KW01L	GR443QR73D222KW01L
GR443QR73D392KW01L	GR443QR7LB222KW01L	GR431BR7LA102KW01L	GR442DR73D102KW02L
GR442DR73D152KW02L	GR442QR73D101KW01L	GR442QR73D102KW01L	GR442QR73D152KW01L
GR442QR73D152KW02L	GR442QR7LB101KW01L	GR442QR7LB152KW01L	GR443DR73D222KW01L
GR442QR73D471KW01L	GR443QR73D272KW01L	GR442QR73D151KW01L	GR443QR73D182KW01L
GR433QR73D102KW01L	GR431CR72E104KW03L	GR455DR62E105KW01L	GR442QR73D561KW01L
GR443QR73D332KW01L	GR442QR73D681KW01L	GR442QR73D331KW01L	GR442QR73D221KW01L
GR442QR73D121KW01L	GR442QR73D122KW01L	GR442QR73D181KW01L	GR442QR73D271KW01L
GR442QR73D391KW01L	GR442QR73D821KW01L	GR431BR7LA471KW01L	GR442QR7LB102KW01L
GR442QR7LB151KW01L	GR442QR7LB221KW01L	GR442QR7LB331KW01L	GR442QR7LB471KW01L
GR442QR7LB681KW01L	GR443DR7LB472KW01L	GR443QR7LB182KW01L	GR443QR7LB272KW01L
GR443QR7LB332KW01L	GR443QR7LB392KW01L	GR455DR73D103KW01L	GR442QR7LB121KW01L
GR442QR7LB122KW01L	GR442QR7LB181KW01L	GR442QR7LB271KW01L	GR442QR7LB391KW01L
GR442QR7LB561KW01L	GR442QR7LB821KW01L	GR431BR7LA102KW66L	GR443QR73D102KW01K
GR443DR73D472KW01K	GR443QR73D222KW01K	GR432D7U2J822JWC2L	GR442QR73D391KW01K
GR443QR73D272KW01K	GR432E7U2J123JWC1L	GR442QR73D122KW01K	GR442QR73D152KW01K
GR442QR73D561KW01K	GR442QR73D471KW01K	GR442QR73D681KW01K	GR431A7U2J102JWC2D
GR442QR73D821KW01K	GR442QR73D121KW01K	GR431A7U2J122JWC2D	GR442QR73D271KW01K
GR431A7U2J222JWC2D	GR431C7U2J472JWC1L	GR442QR73D151KW01K	GR443QR73D392KW01K
GR432E7U2J153JWC1L	GR442QR73D101KW01K	GR443QR73D182KW01K	GR432D7U2J103JWC2L
GR442QR73D221KW01K	GR442QR73D181KW01K	GR442QR73D331KW01K	GR443QR73D332KW01K
GR442QR73D102KW01K			