
Product Description

The Qorvo QPM1000 is an integrated limiter/LNA providing robust, high performance over the 2–20GHz frequency range. The QPM1000 delivers 17 dB small signal gain with gain control and > 18 dBm P1dB with a range of noise figure of 1.5 – 4 dB across frequency. In addition, the integrated limiter provides a robustness level of up to 4 W of incident power without performance degradation.

The QPM1000 is packaged in an air cavity, laminate-based 6 x 5 mm QFN for easy handling. With a small form factor coupled with both ports matched to 50 ohms, the QPM1000 is ideally suited to support both commercial and defense related applications where robust receiver front ends are required.

Functional Block Diagram

Product Features

- Frequency Range: 2-20 GHz
 Input Power CW Survivability: 4 W
- Gain: > 17 dB
- Adjustable gain (> 30 dB using V_{G2})
- Noise Figure: < 2.0 dB (3-12 GHz)
- Noise Figure: < 4.0 dB (outer frequencies)
- IM3: < -21 dBc (P_{IN} ≤ 0 dBm)
- Bias: $V_D = 5 \text{ V}$, $I_D = 100 \text{ mA}$, $V_{G1} = -0.6 \text{ V}$ typical, $V_{G2} = +1.3 \text{ V}$
- Package dimensions: 6.00 x 5.00 x 1.72 mm

Applications

Receiver Front End Building Block

Ordering Information

Part No.	Description
QPM1000	2-20 GHz Limiter/LNA, Waffle Pack, Qty 25
QPM1000TR7	Tape and Reel 7 ", Qty 250
QPM1000EVB01	QPM1000 Evaluation Board, Qty 1

Absolute Maximum Ratings

Parameter	Min Value	Max Value	Units
Drain Voltage (V _D)	-	7	V
Gate Voltage Range (V _{G1})	-2	0	V
Gate Voltage Range (V _{G2})	-2	3	V
Drain Current (I _D)	-	144	mA
Gate Current Range (I _{G1} , I _{G2} each)	-24	24	mA
RF Input Power, CW, 50 Ω, 25 °C	-	36	dBm
RF Input Power, CW, 50 Ω, 85 °C	-	33	dBm
Incident Power, Pulsed, PW = 100 uS, Duty Cycle = 10%, 50 Ω, 85 °C	-	40	dBm
Mounting Temperature (30 Seconds)	-	260	°C
Storage Temperature	− 55	150	°C

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Value / Range
Drain Voltage (V _D)	5 V
Drain Current (I _{DQ})	100 mA
Gate Voltage (V _{G1}) ¹ , typical, can be adjusted to get required I _{DQ}	-0.6 V
Gate Voltage (V _{G2})	+1.3 V
Operating Temperature Range (T _{BASE})	−40 to 85 °C

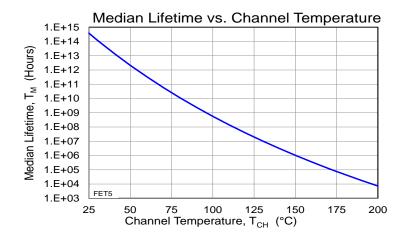
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

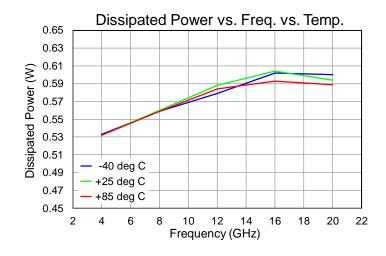
Electrical Specifications

Parameter	Min	Тур	Max	Units
Operational Frequency Range	2	_	20	GHz
Small Signal Gain	_	> 17	_	dB
Input Return Loss	_	> 9.7	_	dB
Output Return Loss	_	> 7.6	_	dB
Noise Figure: 2 GHz	_	2.8	_	dB
Noise Figure: 8 GHz	_	1.7	_	dB
Noise Figure: 14 GHz	_	2.3	_	dB
Noise Figure: 20 GHz	_	4.0	_	dB
Third-Order Intermodulation Distortion (P _{IN} ≤ 0 dBm / Tone, 10 MHz Tone Spacing)	_	< -21	_	dBc
Output Power (Saturation; P _{IN} = 10 dBm)	_	> 21	_	dBm
Output Power (1 dB Compression)	_	> 17	_	dBm
Small Signal Gain Temperature Coefficient	_	-0.010	_	dB/°C
Noise Figure Temperature Coefficient	_	0.010	_	dB/°C
Output Power Temperature Coefficient	_	-0.004	_	dBm/°C

Test conditions unless otherwise noted: 25 °C, $V_D = +5 \, V$, $I_{DQ} = 100 \, mA$, $V_{G1} = -0.6 \, V$ Typical, $V_{G2} = 1.3 \, V$ Data de-embedded of test fixture losses.

Thermal and Reliability Information

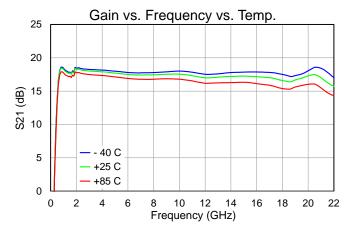

Parameter	Test Conditions	Value	Units
Thermal Resistance (θ _{JC}) ⁽¹⁾	$T_{BASE} = 85 ^{\circ}\text{C}, V_{D} = 5 ^{\circ}\text{V}$	30.2	°C/W
Channel Temperature (T _{CH}) (Under RF drive)	At Freq = 16 GHz, P_{IN} = 10 dBm: I_{DQ} = 100 mA, $I_{D \text{ Drive}}$ = 144 mA	102	°C
Median Lifetime (T _M)	Pout = 20.3 dBm, Pbiss = 0.562 W	4.77E+8	Hrs

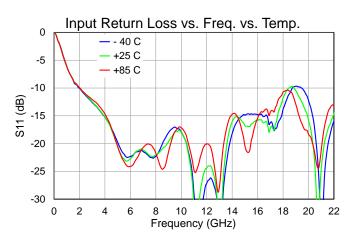

Notes:

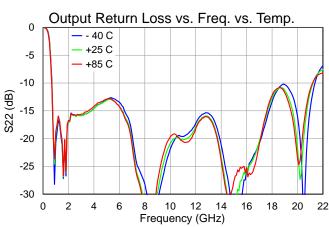
1. Thermal resistance referenced to back of package.

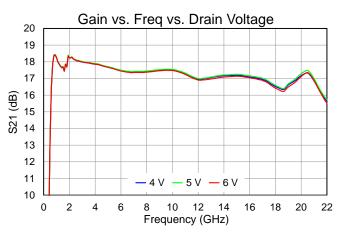
Median Lifetime

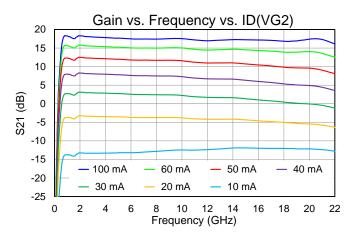
Test Conditions: V_D = 6 V; Failure Criteria = 10 % reduction in ID_MAX during DC Testing

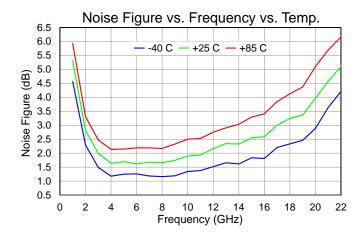


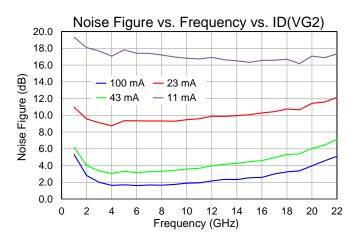


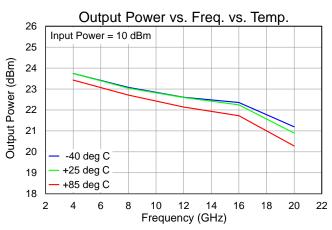



Performance Plots - Small Signal

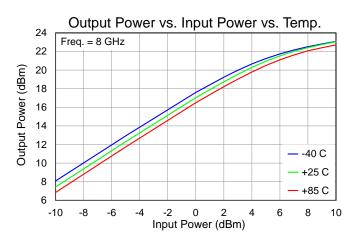

Conditions unless otherwise specified: $V_D = 5 \text{ V}$, $I_{DQ} = 100 \text{ mA}$, $V_{G2} = 1.3 \text{ V}$

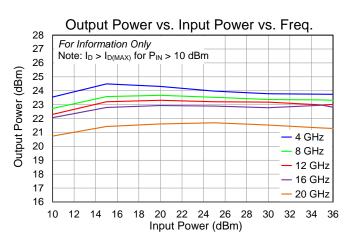


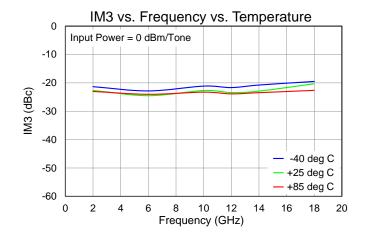


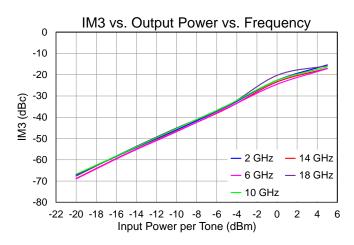


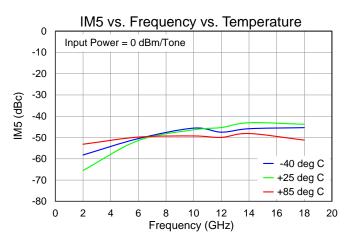

Performance Plots - Noise Figure & Large Signal

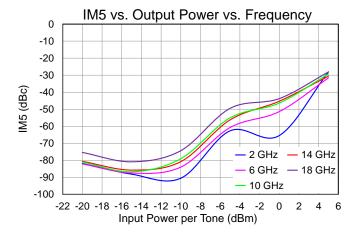

Conditions unless otherwise specified: $V_D = 5 V$, $I_{DQ} = 100 \text{ mA}$, $V_{G2} = 1.3 \text{ V}$



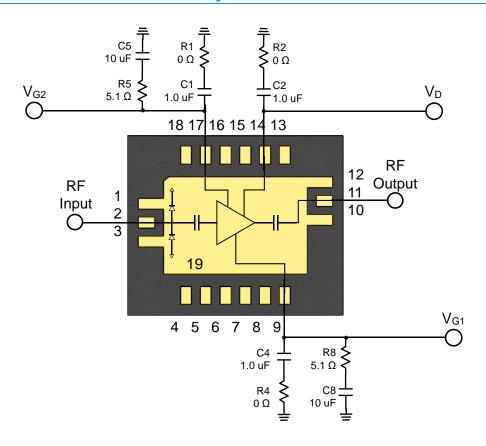







Performance Plots – Linearity

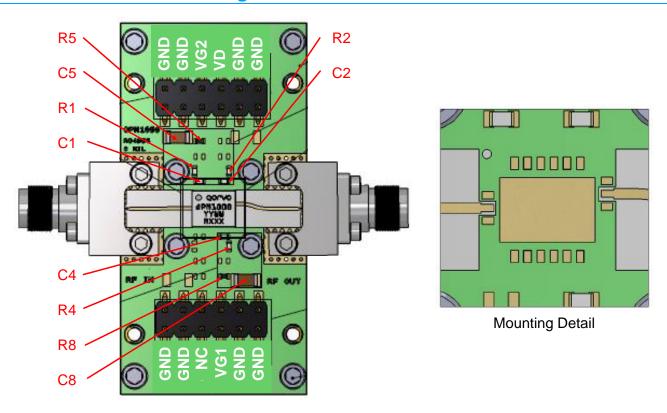
Conditions unless otherwise specified: $V_D = 5 V$, $I_{DQ} = 100 \text{ mA}$, $V_{G2} = 1.3 V$



Applications Information and Pin Layout

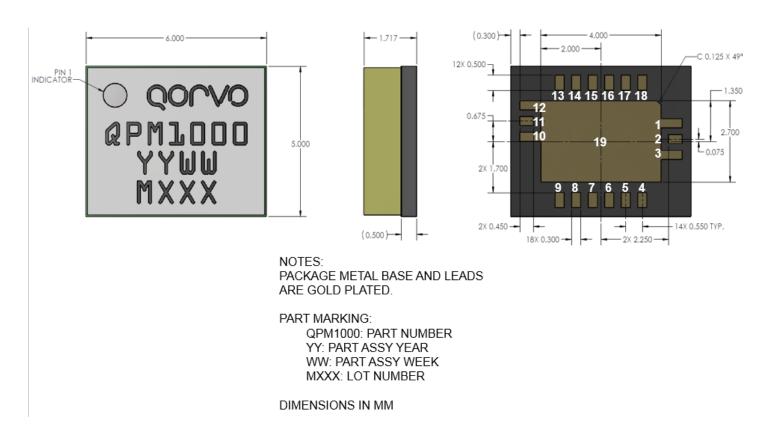
Bias Up Procedure

- 1. Set I_D limit to 145 mA, I_G limit to 24 mA
- 2. Apply -1.5 V to V_{G1}
- 3. Apply +5 V to VD; ensure IDQ is approx. 0 mA
- 4. Apply +1.3 V to $V_{\rm G2}$, can apply $V_{\rm D}$ and $V_{\rm G2}$ at the same time
- 5. Adjust V_{G1} until I_{DQ} = 100 mA ($V_{G1} \sim -0.6$ V Typ.)
- 6. Turn on RF supply


Bias Down Procedure

- 1. Turn off RF supply
- 2. Reduce V_{G1} to -1.5 V; ensure I_{DQ} is approx. 0 mA
- 3. Set V_{G2} to 0 V
- 4. Set V_D to 0 V (can set V_{G2} and V_D to 0 V at the same time
- 5. Turn off V_D supply
- 6. Turn off V_{G1} and V_{G2} supplies

Evaluation Board and Mounting Detail

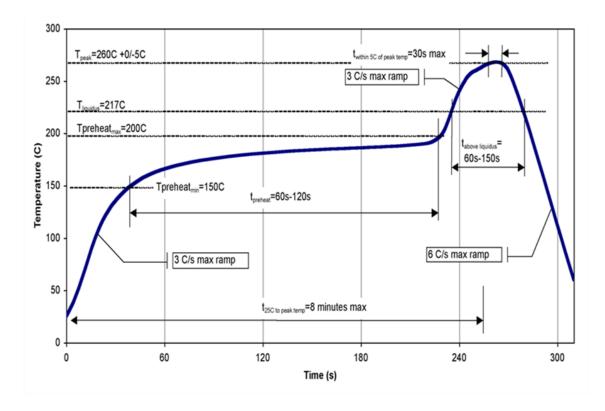

RF Layer is 0.008" thick Rogers Corp. RO40003C ($\epsilon_r = 3.35$). Metal layers are 1.0 oz. copper. The microstrip line at the connector interface is optimized for the Southwest Microwave end launch connector 1092-01A-5.

Bill of Materials

Reference Des.	Value	Description	Manuf.	Part Number
C1, C2, C4	1.0 µF	Cap, 402, +50 V, ±10 %, X7R	Various	_
C5, C8	10.0 μF	Cap, 1206, +50 V, ±20 %, X5R	Various	_
R1, R2, R4	0 Ω	Res, 0402, SMT	Various	_
R5, R8	5.1 Ω	Res, 0402, SMT	Various	_

Mechanical Drawing

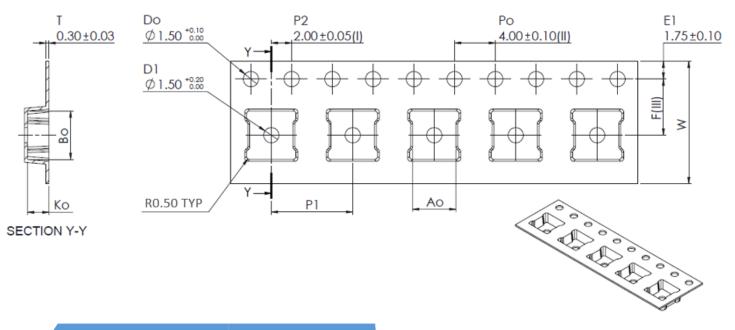
Pad Description

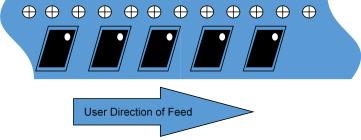

Pin No.	Label	Description
1, 3, 10, 12, 19	GND	RF Ground.
2	RF Input	RF Input; matched to 50 Ω, DC coupled.
4 – 8, 13, 15, 16, 18	NC	No connection in package. Can be grounded on the PCB if desired.
9	V _{G1}	Gate Voltage 1; Bias network is required; see Application Information above.
11	RF Output	RF Output; matched to 50 Ω; DC blocked
14	V _D	Drain voltage; Bias network is required; see Application Information above.
17	V _{G2}	Gate Voltage 2; Bias network is required; see Application Information above.

Solderability

- 1. Compatible with the latest version of J-STD-020, Lead-free solder, 260 °C.
- 2. This package is non-hermetic, and therefore cannot be subjected to aqueous washing. The use of no-clean solder to avoid washing is highly recommended.

Recommended Soldering Temperature Profile





Tape and Reel Information

Standard T/R size = 250 pieces on a 7" reel.

Material		Cavity (mm)		Distance Betwee Centerline (mm			Carrier Tape (mm)	Cover Carrier (mm)	
Vendor	Vendor P/N	Length (A0)	Width (B0)	Depth (K0)	Pitch (P1)	Length direction (P2)	Width Direction (F)	Width (W)	Width (W1)
Advantek	BCA389-A	5.30	6.30	2.1	8.0	2.00	5.50	12.0	9.20

QPM1000

2-20 GHz Limiter/Low-Noise Amplifier

Handling Precautions

Parameter	Rating	Standard
ESD – Human Body Model (HBM)	Class 1A	ANSI/ESD/JEDEC JS-001-2012
ESD-Charge Device Model (CDM)	Class C3	ANSI/ESD/JEDEC JS-002-2014
MSL – 260 °C Convection Reflow	Level 3	IPC/JEDEC J-STD-020

RoHS Compliance

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- · Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Tel: 1-844-890-8163
Web: <u>www.qorvo.com</u>

Email: customer.support@gorvo.com

Important Notice

The information contained in this Data Sheet and any associated documents ("Data Sheet Information") is believed to be reliable; however, Qorvo makes no warranties regarding the Data Sheet Information and assumes no responsibility or liability whatsoever for the use of said information. All Data Sheet Information is subject to change without notice. Customers should obtain and verify the latest relevant Data Sheet Information before placing orders for Qorvo® products. Data Sheet Information or the use thereof does not grant, explicitly, implicitly or otherwise any rights or licenses to any third party with respect to patents or any other intellectual property whether with regard to such Data Sheet Information itself or anything described by such information.

DATA SHEET INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo® products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Applications described in the Data Sheet Information are for illustrative purposes only. Customers are responsible for validating that a particular product described in the Data Sheet Information is suitable for use in a particular application.

© 2024 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc. | QORVO® is a registered trademark of Qorvo US, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo:

QPM1000 QPM1000EVB01 QPM1000TR7